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categories, R or L. It is then necessary to establish 
which category represents the positive and which the 
negative phase. This can be done conveniently by 
considering the averages of the magnitudes of the 
structure factors in each group. We have arbitrarily 
utilized the product of the magnitudes of the secondary 
and coupling terms of each interaction as representa- 
tive of the magnitude of the n-beam interaction in 
which they are involved. The products were normalized 
by setting the value of the largest one to 100. On that 
scale, the average product equalled 61 for category L 
and 21 for R. Clearly, the former represented the 
positive phases. This conclusion was supported by the 
fact that the largest product in the 'negative' group had 
a normalized value of only 43. 

One minor, but possibly confusing, point should be 
noted. On most chart recordings, the relative locations 
of maxima and minima will appear in a sequence 
opposite to that of the calculated ones. The effect is 
illustrated in Fig. 5. 

We summarize by noting that there can be little 
doubt that the phases of reflection triplets can be 
determined directly from the analysis of n-beam 
intensities, for centrosymmetric crystals with relatively 
small unit cells. The extent to which the procedures 
outlined above can be used, after suitable modification, 
to determine phases routinely and correctly for non- 
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Fig. 5. Reversal of intensity sequence on chart recording. 

centrosymmetric crystals and for crystals with large 
unit cells remains to be established. 
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Abstract 

The following hypothesis is proposed: crystal struc- 
tures may be ordered or classified according to the 
polymerization of those coordination polyhedra (not 
necessarily of the same type) with the higher bond 
valences. The linkage of polyhedra to form clusters is 
considered from a graph-theoretic viewpoint. Poly- 
hedra are represented by the chromatic vertices of a 
(labelled) graph, in which different colours indicate 
coordination polyhedra of different type. The linking 
together of polyhedra is denoted by the presence of an 
edge or edges between vertices representing linked 
polyhedra, the number of edges between two vertices 
corresponding to the number of corners (atoms) 
common to both polyhedra. Information on geo- 

metrical isomerism is lost in this graphical represen- 
tation, but the graphical characteristics are retained. 
The graph may be completely represented by its 

matrix, a n n  × nmatrix [with[~} = N adjacency 
\ / - /  

independent dements] denoting vertex linkage; it is 
convenient to represent the N independent matrix 
elements by the ordered set {a,b,c,...,N}. The collec- 
tion of all permutations of the vertex labellings that 
preserve isomorphism is called the automorphism 
group F(G) of the graph. F(G) is a subgroup of the 
symmetric group Sn, and the complementary disjoint 
subgroup of S, defines all distinct graphs whose vertex 
sets correspond to the (unordered) set {a,b,c,...,N}. 
However, it is more convenient in practice to work with 
the corresponding matrix-element symmetries that form 
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a permutation group, denoted P. This particular 
formation allows the rigorous but natural distinction 
between graphical and geometrical isomers, and allows 
systematic investigation of their characteristics. 
Graphical isomers can be enumerated using P61ya's 
theorem, by substitution of permitted matrix elements 
as weight functions into the cycle index of the 
permutation group P, and can be derived as non- 
equivalent derangements of the integer set 
{a,b,c,...,N}. Geometrical isomers can be enumerated 
for a specific graphical isomer by successively applying 
P61ya's theorem to the distribution of shared elements 
over the total dement set of each polyhedron in turn, 
and can be derived in a similar fashion. The 
M2(TO4)2~ N clusters are considered as an example of 
this procedure. 

Introduction 

A large number of crystal structures has been deter- 
mined in the last seventy years, and considerable 
attention has focused on understanding detailed vari- 
ations in such structural parameters as bond lengths 
and bond angles. However, the basic architecture of 
crystal structures has received relatively little attention. 
This results from the difficulty in both appreciating and 
fully assimilating the geometrical details of a three- 
dimensional array of atoms. Two principal methods 
have been used to describe and visually represent 
crystal structures. Perhaps the most common and, to 
date, the most successful method is to represent 
structures as arrays of connected coordination poly- 
hedra. This has been applied to a wide variety of crystal 
structures ranging from oxides through chalcogenides 
to complex alloys and metals, representing the widest 
variety of bond type. The second method of describing 
and ordering structures is as two- and three- 
dimensional nets, with the atoms situated at the vertices 
of the net and the edges of the net representing 
chemical bonds. As a general vehicle for describing 
crystal structures, it is not as popular as the polyhedral 
approach, except within the limits of close-packing and 
two-dimensional nets when it is primarily used for 
simple oxides and alloys. 

General considerations 

The general problem of atomic arrangements and their 
taxonomy is an epistemological one. However, most of 
the work in this area has involved the classification of 
specific groups of compounds, and has proceeded in an 
inductive manner from the observed crystal structures. 
Notable exceptions to this are the work of Wells (1977, 
and references therein, 1979) on two- and three- 
dimensional nets, and the work of Moore (1974) on 
edge-sharing octahedral clusters. The work of Wells 

(1977) provides both a basis for direct application to 
crystal structures and a model for further development 
of complex nets, and work in this area is progressing 
(e.g. Pearson, 1972; Smith, 1977, 1978, 1979; 
O'Keeffe & Hyde, 1980). Apart from the work of 
Moore (1974), all work on polyhedral representations 
is structure based. This would seem to stem from the 
fact that there is no general systematic approach to the 
linkage and organization of polyhedra in three 
dimensions. 

The coordination polyhedron approach to structures 
has led to reasonably successful classifications for some 
groups of compounds. Typical in this regard are the 
silicates and the borates, which have been syste- 
matized according to the polymerizations of their 
principal anionic groups. However, such an approach 
to structure taxonomy is of little use in classes of 
structures such as the phosphate or the sulphate 
minerals, or the nesosilicates, in which the principal 
anionic group does not self-polymerize. In one such 
example, the phosphate minerals, Moore (1980) has 
developed a successful classification based on  the 
polymerization of octahedrally coordinated divalent 
and trivalent cations. Thus, on the one hand, there are 
structural classifications involving solely the principal 
oxyanion of the structural class and, on the other, a 
classification that does not involve the principal 
oxyanion of the class at all. These two methods may be 
improved and integrated together into a coherent 
approach with the following hypothesis: structures may 
be ordered or classified according to the polymeri- 
zation of  those coordination polyhedra with higher 
bond valences. Such a hypothesis is suggested also by 
the valence-matching principle of bond-valence theory 
(Brown, 1978, 1981). As examples, this approach 
would allow for a more adequate classification of the 
nesosilicates based on the polymerization of SiO4 
tetrahedra and M~0,, polyhedra, and would incorporate 
the PO 4 oxyanion into the structural classification of 
the phosphate minerals (cf. Hawthorne, 1979). 

Many classifications of more complex structures 
recognize families of structures based on different 
arrangements of a fundamental building block or 
module. This is a tightly bound unit within the 
structure, and can be envisaged as the inorganic 
analogue of a molecule in an organic structure. Such 
modules are the basis of structural hierarchies that 
encompass simple and complex oxides (e.g. Bursill & 
Hyde, 1972), biopyriboles (Thompson, 1978, 1981), 
complex sulphosalts (e.g. Wuensch, 1974) and com- 
plex alloy structures (e.g. Andersson, 1981; Parth~, 
1981). These modules are formed by polymerization of 
those coordination polyhedra that are most strongly 
bonded, irrespective of the character of the bonding. 
The existence of structure modules and their utility in 
structural description and classification falls within the 
framework of the above hypothesis. 
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Most studies that evaluate structure stability or 
bonding characteristics do so on a small fragment of 
the overall structure, an approach that seems to be 
justified by the results of such calculations (Burdett, 
1981, 1982; Gibbs, 1982) and suggested by detailed 
consideration of bonding in solids (Bader & Nguyen- 
Dang, 1981). Such fragments generally consist of 
coordination polyhedra together with their central 
atoms, and the relative stability of these clusters is 
assessed according to some a priori criteria, usually 
involving some kind of energy minimization. The 
clusters generally considered are the most strongly 
bonded fragments of the structures under consider- 
ation. In this regard, the cluster is the basic module of 
the structure and the basic philosophy parallels that of 
modular crystallography. Thus both the modular 
approach to structural genealogies and the 'molecular' 
approach to structural stability support the applic- 
ability of the above hypothesis on structure hierarchy. 

All observed polyhedron clusters or modules are 
fairly stable, just by virtue of their existence; similarly, 
unstable clusters will never occur, just because they are 
unstable. Although a truism, the previous statement 
emphasizes that to understand the stability of such 
clusters and to evaluate the reliability of our stability 
criteria, it is necessary to examine all possible clusters 
consonant with the stoichiometry of interest, and not 
just those clusters that are observed in structures. Thus 
the a priori calculation of all possible polyhedron 
arrangements of interest assumes importance in the 
study of cluster stability. The hypothesis introduced 
above may form the basis of a global approach to 
structure taxonomy. However, both this and a general 
approach to cluster stability are hindered by the fact 
that there is no rigorous systematic approach to the 
linkage and organization of polyhedra in three dimen- 
sions. The present study uses some simple results from 
graph theory and combinatorics to develop a method 
for the enumeration and derivation of all possible 
polyhedron clusters, subject to a set of external 
constraints. These constraints limit an otherwise infinite 
problem, and can incorporate such factors as fixed 
number of polyhedra (fixed cation stoichiometry), fixed 
number of vertices (fixed anion stoichiometry) and 
limitations on shared elements (for crystal chemical 
reasons, such as to conform with Pauling's rules). 

Clusters as graphs 

Consider an array of linked polyhedra (Fig. 1). We 
may represent the polyhedra by the (chromatic) 
vertices of a graph, in which the different colours 
indicate coordination polyhedra of different type. The 
linking together of polyhedra can be denoted by the 
presence of an edge or edges between vertices rep- 
resenting the linked polyhedra. The number of edges 

between vertices denotes the number of atoms common 
to both polyhedra. Thus one edge between two vertices 
represents corner sharing between two polyhedra, two 
edges between two vertices represents edge sharing 
between two polyhedra, and three edges between two 
polyhedra represents triangular face sharing, etc. (Fig. 
2). The structural representation in Fig. 1 (c) is a graph, 
which may be formally defined as a non-empty finite set 
of elements called vertices and a finite family of 
unordered pairs of elements of the vertex set called 
edges; note that the definition of the collection of edges 
as a family rather than a set permits the existence of 
multiple edges, a feature that is crucial to the use of 
graphs in this context. The graph in Fig. 1 (c) is a much 
simpler representation than the original polyhedral 
array that is in turn a simpler representation than a 
conventional 'ball and stick' drawing. The trend of 
increasing abstraction from Figs. l (a)-- , (b)~(c)is  
accompanied by a loss of information. This can easily 
be seen in terms of the polyhedral diagram as 
compared with the 'ball and stick' diagram. In the 
former, all information on ligand type and isomerism is 
lost when compared with the latter. Moving from the 
polyhedral representation to the graphical repres- 
entation, geometrical information on the polyhedral 

(a) 

M2T2~le 
(d) 

l (b) 

3 

(c) 
Fig. 1. Different representations of the atom cluster [M v~ T~ v (016]. 

Fig. 2. Graphical representation of corner-sharing, edge-sharing 
and face-sharing octahedral dimers. 
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linkage is lost. This is illustrated in Fig. 3 which shows 
two different possible arrangements for the corner- 
linked cluster MT2~o12[=-M(T~o4)2~o4]. In Fig. 3(a), the 
tetrahedra are arranged in a cis configuration relative to 
the octahedron, whereas in Fig. 3(b) the tetrahedra are 
arranged in a trans configuration; a single graph 
represents both configurations which are designated 
geometrical isomers (cf. Moore, 1974, 1975). Thus the 
graphical representation has no information on geo- 
metrical isomerism. Continuing this process of abstrac- 
tion, we move from the graph to the cluster formula 
itself. Here we lose information concerning the types of 
polyhedral linkage that occur in the cluster. Thus, in 
Fig. 4, the clusters (a) and (b) are both represented by 

(a) (b) 

\ / 
2 ~ 1  3 =MT2®12 

Fig. 3. Two geometrical isomers of an MT 2 ~012 cluster. 

the cluster formula MT2(Pl 2. The different graphs that 
correspond to a specific cluster formula are called 
graphical isomers, and the cluster formula contains no 
information on graphical isomerism. 

Matrix representation 

The adjacency matrix of a graph with a vertex set 
{v~,...,v,} is the n x n matrix [atj], in which a u is the 
number of edges joining the vertices v t and vj. This is a 
symmetric matrix in which each row or column sum is 
the degree of the corresponding vertex, that is the 
number of atoms that the/ th polyhedron shares with 
adjacent polyhedra. An example of a polyhedral array, 
its graph and the corresponding adjacency matrix is 
shown in Fig. 5. The adjacency matrix preserves all the 
properties of the graph, but has the advantage that it is 
a numerical form rather than a visual form and is thus 
susceptible to mathematical manipulation. 

As the adjacency matrix of the graph of a po!yhedral 
cluster preserves many of the properties of that cluster, 
we may reverse this procedure and use matrices and 
their properties to investigate the characteristics of 
polyhedral clusters. This method has great advantages 
over visual approaches to the problem. The total 
number of possibilities may first be enumerated, both to 
provide a check on the derivation procedure and to 
indicate whether or not the problem under consider- 
ation admits practical solution. Systematic derivation 
through matrix-element manipulation should not allow 
the chance of missing possible arrangements that 
accompanies the more intuitive approach. Various a 
priori restrictions can be imposed on the enumeration 

(a) (b) 

3 

/ 

1 2 3 4 

2 ~ 3  2 1 ~ 3  1 - 2 1 1  

2 2 - 1 1 

1 3 1 1 - o 
J 4 1 1 0 - 

M T 2 ( D 1 2  Fig. 5. Graphical representation and adjacency matrix represen- 
Fig. 4. Two graphical isomers of an MT 2 tpl 2 cluster, tation of an M 2 T 2 ~ot4 cluster. 
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and derivation procedures. For example, if one does not 
wish to consider clusters involving face-sharing bet- 
ween tetrahedra, then this constraint is easily imposed 
by restricting the matrix elements in the relevant part of 
the matrix to the values 0, 1 and 2. 

Cluster stoiehiometry 

Let there be t types of polyhedra in a cluster, and let a k 
be the number of polyhedra of coordination number bk; 
let there be c anions in the cluster. The terms 'cation' 
and 'anion' are used to distinguish between two types of 
atoms, one more electropositive than the other; they are 
not meant to have any connotation with regard to 
chemical bonding. The 'cluster' represented by the null 
graph has 

t 

c= Z akbk and Y x u = 0 ,  
k = l  t>j 

where xij are the elements of the adjacency matrix. Let 
us temporarily assume that the anion coordination 
numbers in the cluster are either [1] or [2]. For each 
shared vertex in the cluster, c decreases by 1 from its 
value in the completely unconnected cluster. As the 
number of shared vertices in the cluster is Y l>jxu, 

t 

C =  ~ akb  k -  Z Xij" 
k= 1 i>J 

When higher anion coordination numbers occur in the 
cluster, this formula must be modified as each entry in 
the adjacency matrix does not necessarily result in a 
decreased number of vertices in the graph. Let one of 
the anions in the cluster be n coordinate (n > 2). Each 
of the coordination polyhedra that link to this anion 
thus link to each other and give rise to n(n - 1)/2 
matrix elements. Retaining the same stoichiometry but 
with only two-coordinate anions present results in 
(n - 1) matrix elements in the corresponding part 
of the adjacency matrix. This is a difference of 
(n - 1)(n - 2)/2 matrix elements, and each n coordi- 
nate anion in the cluster is equivalent to (n - 1)(n - 2)/2 
in ~t>jxu, the sum of the adjacency matrix elements. 
If r(n) is the number of n-coordinate anions in the 
cluster (n > 2), the number of anions in the cluster, c, 
is given by 

t co 

C =  ~ akb  k - -  ~. X i j  + ~ ½ ( n - - 1 ) ( n - - 2 )  r ( n ) .  
k= 1 i>j n = 3 

Conversely, for a given stoichiometry, the sum of the 
adjacency matrix elements is given by 

t oo 

xi j= ~. akbk--C + Y ½(n--1)(n--2)  r(n). 
i>j k = l  n=3 

Isomorphic graphs 

Inspection of Figs. 1-5 shows that the vertices of the 
graphs are associated with numbers; thus these graphs 
are labelled graphs. Formally, a labelling of a graph, G, 
on n vertices is a one-one mapping from the vertex set 
of G on to the set of integers {1,2,...,n}. A labelled 
graph is then expressed as (G,~0), where G is a graph 
and ¢ is a labelling of that graph. The polyhedral 
cluster is obviously independent of the way in which the 
graph is labelled, and thus it is necessary to consider 
the equivalence of labelled graphs. Two labelled graphs 
(GI,fPl) and (G2,tP2) are considered the same and called 
isomorphic if there is a one-one mapping from the 
vertex set V(G~) on to V(G2) such that both the 
adjacency and the labelling of the vertices are pre- 
served. This one-one mapping may be considered as a 
permutation of the vertex labellings, and the collection 
of all possible permutations of the vertex labellings is 
the symmetric group S n. The collection of all per- 
mutations of the vertex labellings that preserve iso- 
morphism is called the automorphism group F(G) of 
the graph. F(G) is obviously a subgroup of S n, and the 
complementary disjoint subgroup of S n defines all 
labellings of G that are distinct. 

Each permutation of Sn can be classified according 
to its disjoint cycle decomposition, and the different 
permutations can be divided up into different classes, 
called conjugacy classes, whose structure is denoted by 
the formal symbol 

k=1 

in which s k are dummy variables and j(k,g) denotes j 
cycles of length k in the permutation g E Sn. Note that 

n 

~. kj(k,g)= n 
k = l  

constitutes a useful check when dealing with cycle 
structure. The number of conjugacy classes in S~ is 
p(n), the number of partitions of the integer n. The 
elements of the automorphism group F(G) will be 
restricted to those conjugacy classes whose cycle 
lengths are less than or equal to the numbers of similar 
polyhedra in the cluster considered. The conjugacy 
classes for $4 are shown in Table 1, together with the 
cluster compositions that are compatible with them. 

Table 1. Conjugacy classes for $4 together with 
compatible cluster composition 

C o n j u g a c y  class C o m p a t i b l e  c lus ter  

s4t s o s o s o ABCDq~ 
S] S~ S]S o A2BC~9. 

0 2 Sl S2 S o S o A2B20 z 
S~ o 1 s2 s3 s o A3B~ ~ 
sO oo oO sl A :;z 

1 02  " 3  
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The adjacency matrix of a graph with n vertices has 
n 2 elements; however, the matrix is symmetric and the 
diagonal elements are all unity. Thus the number of 

independentmatrixelementsN= n(n-1)/2 = (~) .  It 

is convenient to designate tile matrix elements [xu; i < 
j, j increasing monotonically] by the ordered set of 
integers {a,b,c,...,N}. In terms of the adjacency matrix, 
equivalent labelled graphs can be considered as 
derangements of the vertex labellings with the matrix 
elements fixed, or as derangements of the adjacency 
matrix elements with the vertex labellings fixed. As we 
are using and manipulating matrix representations here, 
the second formulation is more convenient. The group 
of matrix-element symmetries may be derived by 
considering the vertex-labelling permutations of the 
automorphism group and carrying along with these the 
corresponding rows and columns of the adjacency 
matrix. It is this group of symmetries, expressed as 
derangements of the integer set {a,b,c,...,N}, that will 
be taken into account in the enumeration and deri- 
vation of cluster types. 

If there are t different types of polyhedra in the 

cluster, then there are different collections of 
2 

matrix elements, whose cycles must be disjoint in the 
matrix element permutations. Let there be ak poly- 

hedra of type be with ~k ak = n; there are (2k) 

matrix elements describing the linkage between type b k 
polyhedra, and aka j matrix elements describing the 
linkage between type b k and type b 1 polyhedra. The 
sum over all polyhedral types gives 

[(2k)+'~J~akajl = (~)  = N. 
j=l j 

Enumeration of  graphical Isomers 

The enumeration of graphical isomers is of con- 
siderable interest, both as part of the actual derivation 
of clusters and as an intrinsic problem in its own right. 
The techniques used are those of combinatorial theory, 
introductions to which are given by Brualdi (1977) and 
Cohen (1978). McLarnan (1978, 1981a,b,c) gives a 
lucid development of the important theorems with 
crystallographic applications to various ordering prob- 
lems. A brief informal introduction to the important 
techniques is given here, partly because of the general 
unfamiliarity of the material and partly to put the 
material in a notation that is compatible with that used 
in the rest of the paper. 

Let P be a permutation group (a subgroup of the 
symmetric group SN) that acts on the set of integers X 

= {1,2,...,N}. The cycle index of P, denoted Z(P), is 
the average of the cycle structures ofp E P, given by 

1 N 

p E P  k =  1 

The orbit of any number k (0 < k < N) is the set of 
all numbers to which k is sent by the elements of P; this 
is written as 0(k). The stabilizer of the number k is the 
set of all permutations of P that leave k fixed; this is 
written as St(k). Note that ISt(k) 110(k)l = I PI. In 
terms of equivalent configurations, the importance of 
an orbit stems from the fact that all elements of an orbit 
must be equivalent, and thus the number and character 
of the orbits may be used to delineate equivalent 
configurations. Important in this regard is Burnside's 
theorem (unweighted form) which gives the number of 
distinct orbits associated with P, N(P), as 

1 
N ( P )  = ~ E J(1 ,P) ,  

IPI pEP 

where j(1,p) is the number of 1 cycles in the disjoint 
cycle decomposition ofp. 

Consider the set of integers X = {1,2,...,N} to be 
coloured from a set R of M colours, with P permuting 
colourings of numbers. A whole class of equivalent 
colourings of the numbers is called a scheme S. The 
number of schemes I SI is the number of ways of 
colouring the cycles o fp  E P, summed over P. This is 
given by the unweighted version of P61ya's theorem as 

1 1 

IPI IPl 
PEP PEP 

where q = •kj(k,p). 
Both Burnside's theorem and P61ya's theorem may 

be made far more powerful by introducing the concept 
of weight. In the set of colours R = { 1,2,..., m }, let each 
colour r be assigned a weight w(r). If C is a colouring of 
the integers in X, the weight of C is defined as the 
product of the weights of the assigned colours. Let X be 
divided into disjoint subsets X t (i = 1, l) and let S be the 
set of all colourings that assign the same colour to two 
elements of X if they are in the same subset Xl. The 
inventory of S, inv(S), is defined as the sum of the 
weights of the colourings in S 

1 m 

inv(S) = l-I Y w(r) 'x''. 
1=1 r = l  

Returning now to Burnside's theorem, let P permute 
the elements of X whose elements are weighted by the 
function w, with the property that if two elements of X 
are in the same orbit, then they have the same weight. 
The weight of an orbit 0(k) of P is the common weight 
of each of its elements. For each element p of P, let 
fi~(p) be the sum of the weights of all those elements of 
X that p leaves fixed (i.e. one cycles in the disjoint cycle 
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decomposition of p). The weighted version of Burn- 
side's theorem gives the sum of the weights of the orbits 
of P: 

IPI 1 
w t O ( k ) l  = 

k = l  P6P 

If we now consider X to be the set of colourings of 
{ 1,2,..., N t and not just { 1,2, ....  N } itself, the weight of 
a scheme, or coloured orbit of P, is the common weight 
of the colourings in it. The weighted version of P61ya's 
theorem gives the sum of the weights of all the schemes, 
Z w(S), as 

1 Z y H twits, 
p E P  k = l  

where 

m 

w k = Y w(r) k (k = 1,n). 
r= 1 

This means that the inventory of schemes can easily 
be calculated by substitution of the weight functions Wk 
into the cycle index Z(P). 

An example 

Consider a cluster of six polyhedra, three octahedra 
and three tetrahedra. The general adjacency matrix for 
this is shown in Table 2. Disjoint cycle decomposition 
of the elements of the automorphism group F(G) is 
shown in Table 3, together with the corresponding 
elements of the automorphism group P that acts on the 
matrix elements. A summary of the complete con- 
jugacy class structures of F(G) and P are also given in 
Table 3. Applying the unweighted form of Burnside's 
theorem, the number of orbits, N(P), is 

N(P)=z~[15x 1 + 7 x 6 + 3  x 4  

+ 3 x 9 +  1×  1 2 ] = 3 .  

This is precisely the case for this example, with the 
three orbits corresponding to the three different types of 
matrix elements in the adjacency matrix of Table 2 
(that is, linkage between octahedra, linkage between 
tetrahedra, and linkage between octahedra and tetra- 
hedra. 

Table 2. Adjacency matrix for a cluster of 3 octahedra 
and 3 tetrahedra 

o o o t t t 

1 2 3 4 5 6 

o 1 

o 2 

o 3 

t 4 

t 5 

t 6 

- a b d g k 

a - c e h l 

b c - f i m 

d e f - j n 

g h i j - o 

k l m n o - 

The cycle index of the group P, derived from the 
cycle structure of Table 3, is given as follows: 

Z(P) = "Jgt"~ 1 1  [.,15 + 6S~ S~ + 4S~ S~ + 9S~ S~ 

+ 12Sl S 1 S32 S6' + 4S~]. 

Let the matrix elements be chosen (coloured) from 
the set of m integers (colours). From the unweighted 
version of P61ya's theorem, the number of schemes, 
IS I, is given by Z(P; m), that is by substitution of the 
number of integers for the dummy variables Sk: 

ISI = ~ [ m  a5 + 6m ~1 + 9m 9 +4m 7 + 16m~]. 

If the polyhedra are unconnected or share corners, 
m = 2, if they are connected, share corners and edges, 
m = 3, if  they are unconnected, share corners, edges or 
triangular faces, m = 4. Values of lSI for m = 2, 3 and 
4 are 1408, 433 377 and 30593 024, respectively. 
Preliminary enumeration such as this is important at 
the early stages of study to see if the work is actually 
feasible; for example, energy calculations on all 

Table 3. Disjoint cycle decompositions and cycle 
structures of the automorphism groups F(G) and P for 

the cluster matrix of Table 2 

Disjoint cycle 
decomposition of  Cycle Cycle 

F(G)  structure Disjoint cycle decomposition of P structure 

(1)(2)(3)(4)(5)(6) s~ (a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(i)(m)(n)(o) sl S 
(1)(23)(4)(5)(6) s , s  , (ab)(c)(d)(ef)(g)(hi)(j)(k)(lm)(n)(o) sis274 
(12)(3)(4)(5)(6) s4ts~ (a)(bc)(de)(f)(gh)(i)(j)(kt)(m)(n)(o) s[s~ 
(13)(2)(4)(5)(6) s~s z 4  t (ac)(b)(df)(e)(gi)(h)(j)(km)(1)(n)(o) sls27 , 
(132)(4)(5)(6) s~s~ (abc)(dfe)(gih)(j)(kml)(n)(o) S~lSJ 
(123)(4)(5)(6) s~s~ (acb)(def)(ghi)(j)(klm)(n)(o) s~sJ 
(1)(2)(3)(45)(6) 4 , s,s~ (a)(b)(c)(dg)(eh)(fi)(j)(k)(I)(m)(no) s ', s 2" 
(1)(2)(3)(4)(56) sLs24 ~ (a)(b)(c)(d)(e)(f)(gk)(hl)(im)(jn)(o) s,s27 4 
(1)(2)(3)(46)(5) s~sl. (a)(b)(c)(dk)(el)(fm)(g)(h)(i)(jo)(n) s; sz4 
(1)(2)(3)(456) s~s~ (a)(b)(c)(dgk)(ehl)(fim)(jon) s~s~ 
(I)(2)(3)(465) s~s~ (a)(b)(c)(dkg)(elh)(fmi)(jno) s]s~ 
(1)(23)(45)(6) s~s~ (ab)(c)(dg)(ei)(fh)(j)(k)(Im)(no) s~s~ 
(12)(3)(45)(6) s~s~ (a)(bc)(dh)(eg)(fi)(j)(kl)(m)(no) sis6, 
(13)(2)(45)(6) s~s~ (ae)(b)(di)(eh)(fg)(j)(km)(l)(no) s~s~ 

t t t (abc)(diegJh)(j)(kml)(no) ~ , 2 x (132)(45)(6) s~ s~s 3 s,s2s3s 6 
(123)(45)(6) s',s~s~ (acb)(dhfgei)(j)(khn)(no) sls~s~s ~ 
(1)(23)(4)(56) s~s~ (ab)(c)(d)(ef)(gk)(hm)(il)(jn)(o) s~s~ 
(12)(3)(4)(56) s~s~ (a)(bc)(de)(f)(gl)(hk)(im)(jn)(o) s~s~ 
(13)(2)(a)(56) ~¢~ (ac)(b)(df)(e)(gm)(hl)(ik)(jn)(o) s~s~ 
(132)(4)(56) sls~s~ (abc)(dfe)(gmhkil)(jn)(o) s]s~s~s~ 
(123)(4)(56) sls~s ~ (acb)(def)(glikhm)(jn)(o) sls~s~s~ 
(I)(23)(46)(5) s~s~ (ab)(e)(dk)(em)(fl)(g)(hi)(jo)(n) s~s~ 
(12)(3)(46)(5) s~s~ (a)(bc)(dl)(ek)(fm)(gh)(i)(jo)(n) s~s62 
(13)(2)(46)(5) s~s~ (ae)(b)(dm)(el)(fk)(gi)(h)(jo)(n) s~s~ 
(132)(46)(5) s,s2s~ ~ ~ (abc)(dmekfl)(gih)(jo)(n) sts~s3sr~ , 2 

(123)(46)(5) s~s,s~ ~ ~ (acb)(dlfkem)(ghi)(jo)(n) s, ~ 2 
(I)(23)(456) ~ ~ ~ s t s , s  3 (ab)(c)(dgk)(eilfhm)(jon) s,s2s3s ~ 2 

~ ~ (a)(bc)(dhkegl)(fim)(jon) ~ i 2 (12)(3)(456) s,s~s 3 s~s2s~s ~ 
(13)(2)(456) sls~s~ (ac)(b)(dikfgm)(ehl)(jon) sls~s~s~ 
(132)(456) s~ (abc)(dil)(egm)(fhk)(jon) s] 
(123)(456) s] (acb)(dhm)(eik)(fgl)(jon) s~ 
(1)(23)(465) s ,szs  1 , (ab)(c)(dkg)(eml~i)(jno) s~s~s~s~l , ~ , 

(12)(3)(456) s~s~s~ (a)(bc)(dlgekh)(fmi)(jno) sls~s~s~ 
(13)(2)(465) ~ ' s t s , s  ~ (ac)(b)(dmgfki)(elh)(jno) s~s~s~s~ t ~ 
(132)(465) s~ ( abc)( dmh )( eki )( f lg)(jno ) s~ 
(123)(465) s~ (acb)(dli)(emg)(fkh)(jno) s~ 



F. C. HAWTHORNE 731 

possible clusters of three tetrahedra and three octa- 
hedra would be too much for Methusalah. 

Let the matrix elements be chosen from the set of 
four integers {0,1,2,3} with weights {a,b,c,d}, respec- 
tively. The inventory of schemes is derived from the 
weighted version of P61ya's theorem by substitution of 
the weight functions 

Additional information can be incorporated into the 
inventory if the orbits are coloured from different 
colour sets. This may be done by using different 
dummy variables for each orbit in the cycle index for P. 
Table 4 shows the cycle structure of P without any 
averaging over different orbits. With the dummy 
variables s, t and u, the cycle index becomes 

w k= ~ w(r )k=a k + b  k + d ' + d  k ( k = l , n )  
r = l  

for the dummy variables in the cycle index. Thus 

inv(S) = ~l[(a + b + c + d) 15 

+ 6(a + b + c + d) 7 (a 2 + b 2 + c 2 + d2) 4 

+ 4(a + b + c + d) a (a 3 + b 3 + c a + da) 4 

+ 9(a + b + c + d) a (a 2 + b 2 + c 2 + d2) 6 

+ 1 2 ( a + b + c + d ) ( a  2 + b  2 + c  2 + d  2) 

x ( a  3 + b  3 + c  3+d3)  2(a 6 + b  6 + c  6 + d  6) 

+ 4(a 3 + b a + c a + da)5]. 

This expression contains solutions to all questions in- 
volving enumeration of 3 + 3 clusters with comer, edge 
and face-sharing allowed. Setting a = b = c -- d = 1, 
this equation simplifies to the unweighted form of 
P61ya's theorem and gives the total number of clusters. 
The above expression for inv(S) may be expanded, and 
the coefficient of each term in the simplified expression 
is the number of arrangements with that particular 
weight. If we are only interested in a particular set of 
arrangements with a specific weight, it is much more 
convenient to evaluate just the coefficient of that 
particular term using the multinomial theorem. For 
example, how many 3-3 clusters are there with 5 
shared vertices, one shared edge and one shared face? 
The term of interest in the pattern inventory is thus 
aSbScd, and the relevant term from the above expression 
for inv(S) is 

aSbScd 

36 
[(8,1,5,1) +6 {(4,17,1,1)(2,2,4,0) 

40t(  )(4)/ + 2,3,1,1 3,1,0, + 0,5,1,1 4,0,0,0 

÷ 1 /ooterms } ÷ 4 {noterms}] 
=aSbScd x 8027. 

Thus there are 8027 3-3 clusters with 5 shared 
vertices, one shared face and one shared edge. 

, 3 3sl sg t~ tg u] + I u~ Z ( P )  = ~[s ,  t 9 u] + 3s~ t~ t~ u 

+ 2s~ t~ u~ + 2s] t] u] + %1 s~ tl t~ u] u~ 

+ 6s] t] t~ u~ u2 x + 6sl s I t] t~ u] + as] t] u]]. 

Let the matrix elements be chosen from the sets of 
integers {0,1,2,3}, {0,1} and {0} with weights {a,b,c,d}-, 
{a,b} and {a} respectively for the three distinct orbits 
corresponding to the dummy variables s, t and u. This 
corresponds to allowing no linkage, corner, edge and 
face sharing between octahedra, no linkage and corner 
sharing between octahedra and tetrahedra, and no 
linkage between tetrahedra in a 3-3 octahedral- 
tetrahedral cluster. From the unweighted version of 
Pdlya's theorem, the number of schemes, I S I, is given 
by Z(P;  4,2,1): 

ISI = ~[43 × 29 × 13 + 3 × 42 × 26 × 13 

+ 3  × 4 3 x  26x 1 2 + 2 x 4 x 2 3 x  13 

+ 2 x 4 a x  23x 1 + 9 × 4 2 x 2 5 x  12 

+ 6 x 4 x 2 2 x  1 2 + 6 x 4 2 x  22x 1 

+ 4 x 4 x 23 × 1] = 1512. 

This value compares with the 30 593 024 clusters 
that are possible if all polyhedra are allowed to share 
corners, edges and faces, and is a good example of how 
crystal chemical constraints can reduce an otherwise 
impossible problem to more manageable proportions. 

Let the matrix elements be chosen from the sets of 
integers {0,1,2,3 }, {0,1,2,3 } and {0,1,2,3 } with weights 
{a,b,c,d}, {a,e,f ,g} and {a,h,i,j,}, respectively, for the 
three distinct orbits of P. The inventory of schemes is 

Table 4. The cycle structure o f  the group P with and 
without averaging over the different orbits, for  the 

cluster matrix o f  Table 2 

Averaged Not averaged 

I s~' . . . . . . . . . . . .  (s~)(s~)(sO 1 
_ -  1 1  3 3  3 6 sTs 4 . . . . . . . . .  (s's~)(s'sg(s') 3 

I 2 . . . . . . . . .  3 3 I 1 1 "-(s , ) (s ,  s2)(s, s2) 3 
I 3 3 3 4 . . . . . . . .  (s3)(s3)(s,) 2 

4 s , s 3 : : _ "  . . . . . . . .  (s~)(sJ)(s]) 2 
9 3 6  I I 1 4  1 1 sts2 . . . . . . . . . . .  (sis2)(sls2)(sts2) 9 

1 1 1 1 I 
12 I 1 2 I . . . . . . .  (s3)(s3s~)(sls2) 6 

$ 1 S 2 S 3 S 6 7 "  . . . . . . .  ( e l  e l ~ / c l  e l ~ / c l ~  6 
~o I ° 2 1 ~ 3  ° 6 / k ° 3  ! 

4 s] . . . . . . . . . . . . .  (s~)(s])(s~) 4 
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derived from the weighted version of P61ya's theorem 
by substitution of the weight functions 

Sk= ~ w(r) k = a  k + b k + c k + d k ( k =  l , n )  
r =  1 

m 

t g =  Z w(r) k =  ak + ek + f k  + gk ( k =  l, n) 
r = l  

Uk= ~ w ( r ) k =  a k + h k + i k + jk  (k = l, n) 
r = l  

for the dummy variables in the cycle index. Thus 

inv(S) - -  ~ [ ( a  + b + c + d)3(a + e + f + g)9 

x (a + h + i + j)3 + 3(a + b + c + d) 

x (a 2 + b 2 + c 2 + d2)(a + e + f + g)3 

x (a 2 + e 2 + f2  + g2)3(a + h + i + j)3 

+ 3(a + b + c + d)3(a + e + f + g)3 

× (a 2 + e 2 + f2  + g2)3(a + h + i + j )  

× (a 2 + h 2 + i 2 + j2) + 2(a 3 + b 3 + c 3 + d 3) 

× (a 3 + e 3 + f3  + g3)3(a + h + i + j)3 

+ 2(a + b + c + d)3(a 3 + e 3 + f3  + g3)3 

× (a 3 + h 3 + i 3 + j3) + 9(a + b + c + d) 

× (a ~ + b 2 + c ~ + cl~)(a + e + f + g) 

× (a'  + e 2 + f 2  + g2)( a + h + i + j )  

× (a 2 + h  2 + i  2 + j 2 ) + 6 ( a  3 + b  3 + c  3 + d  3) 

× (a 3 + e 3 + f3  + g3)(a6 + e 6 + f6  + g6) 

× (a + h + i + j ) ( a  2 + h 2 + i 2 + j2)  

+ 6(a + b + c + d)(a 2 + b 2 + c 2 + d 2) 

× (a 3 + e  3 + f 3 + g 3 ) ( a r + e  6 + f r + g r )  

× (a  3 + h 3 + i 3 + j 3 )  + 4 ( a  3 + b 3 + c 3 -4- d 3) 

x (a  3 + e 3 + f 3  + g3)3(a3 + h 3 + i 3 + j3 ) ] .  

As the matrix elements are weighted differently 
depending on which orbit they are in, we can 
distinguish between the same type of linkage between 
different polyhedra, for example edges shared between 
two octahedra and edges shared between an octa- 
hedron and a tetrahedron. As before, let us consider 
3-3  clusters with 5 shared vertices, one shared edge 
and one shared face. However, let us be more specific 
and specify that we are only interested in clusters where 
there are 2 corner-sharing linkages between octahedra, 
2 corner-sharing linkages between octahedra and 
tetrahedra, 1 corner-sharing linkage between tetra- 
hedra, 1 edge sharing between tetrahedra and 1 face 
sharing between an octahedron and a tetrahedron. The 
term of interest in the pattern inventory is thus a x b 2 c o 
d o a 6 e2fO gl a 1 h 1 i I jo (a s b 5 c I d I considered earlier); 

using the multinomial theorem, the relevant term from 
the pattern inventory is 

~6al b 2 c o d o a 6 e2 fO gl a 1 h 1 i 1 jo 

,1,1 6,2, 2,1 

+ 3  ( ( 1 , ~ , 1 ) [ ( ~ ) +  (23,1)] (23,1)} 

"1 

+ n o  m o r e  terms / 
-s 

.I  

= a 1 b2cOaee 2 fOg1 a 1 h 1 i l j o  × 129. 

This compares with the previous total of 8027 when 
the character (orbit) of the shared element is not 
specified. 

Enumeration of geometrical isomers 

The enumeration of geometrical isomers correspond- 
ing to a specific graphical isomer is also required as 
part of the process of deriving all possible clusters for a 
specific cluster formula. Here it is necessary to consider 
the character of the polyhedra in the cluster, as the 
relative arrangement of vertices in each polyhedron 
affects the geometrical isomerism. Consider the ad- 
jacency matrix [xt/]; the elements {xo, i = 1, n} are 
distributed over the vertices, edges and faces of t h e j t h  
polyhedron. Thus the total number of geometrical 
isomers is the product of the number of ways in which 
each matrix row can be distributed over its cor- 
responding polyhedron. As an example, consider a 
cluster of octahedra and tetrahedra. The automor- 
phism groups for all components (vertices, edges and 
faces) of the octahedron and tetrahedron are shown in 
Tables 5 and 6", using the labelling scheme of Fig. 6. 

* Tables 5, 6 and 10 have been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 38519 
(9 pp.). Copies may be obtained through The Executive Secretary, 
International Union of Crystallography, 5 Abbey Square, Chester 
CH 1 2HU, England. 

a 

f b 

k h 

e ¢ 

d 

o 

g 

Fig. 6. Labelling schemes for the corners, edges and faces of an 
octahedron and a tetrahedron. 
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The cycle index of each group is as follows: 

octahedron: 

Z ( P ) - -  ' 6t12 3s 4 s ~ t  4u 4+  ~ [ s ,  u s + 6s 2 SEE t 2 t52 U 4 U 2 

+ 3s 2 s2 2 t 6 u2 4 + 6s2 3 t 2 t2 5 u 4 + s~ t62 u42 

+ 8s 2 t ] u~ u~ + 6s~ s] t4 3 u ] + 6s2 l s41 t34 u ] 

+ 8s~ t 2 u 2 u611; 

tetrahedron: 

Z ( P )  = _2.~[Sll 4 t 6 /,/4 ÷ 6S] S~ t~ t~ U~ U~ + 3S~ t~ t~ U~ 

+ 8S I S] t~ U I U~ + 6S~ tz 1 t4 l ull,  

where s, t, and u are the dummy variables for the 
vertex, edge and face subgroups respectively. For the 
octahedral group, let a = unshared element, b - vertex 
shared with octahedron, c -- vertex shared with 
tetrahedron, d - edge shared with octahedron, e -- edge 
shared with tetrahedron, f = face shared with octa- 
hedron, g = face shared with tetrahedron. 

The inventory of schemes is derived from the 
weighted version of P61ya's theorem by substitution of 
the weight functions 

s , =  ~ w ( r ) * = a * + b  t ' + c *  ( k = 1 , 2 6 )  
r= l  

t k= ~ w ( r ) * = a  k + d * + e  k ( k - - 1 , 2 6 )  
r= 1 

u k= ~ w ( r ) * = a * + f k + ~  ( k = 1 , 2 6 )  
r= 1 

for the dummy variables in the cycle index. Thus 

inv(S) = ~8[(a + b + c) 6 (a + d + e) lz 

× ( a + f + g ) S + ( a  2 + b  2+c2)a 

X (a  2 + d 2 + e2) 6 ( a  2 + f 2  + g2)4 

+ 3(a + b + c) 4 (a 2 + b E + c2)(a + d + e) 4 

× (a 2 + d 2 + e2)4 (a 2 + f 2  + g2)4 

+ 6(a + b + c) 2 (a 2 + b 2 + c2) 2 

× ( a + d + e )  2(a 2 + d  2+ e 2 )  ~ ( a + f + g ) 4  

× (a 2 + f 2 + g E ) z + 3 ( a + b + c )  2 

× (a  2 + b 2 + c2) 2 ( a  2 + d 2 + e2) 6 

× (a 2 + f2  +g2)4 + 6(a 2 + b E + c2)3 

× ( a + d + e )  2(a 2 + d  2+e2)  5 

× (a 2 + f 2  + g2)4 + 8(a 3 + b 3 + C3)2 

× (a 3 + d  3+e3)  4 ( a + f + g ) 2  

× (a 3 + f3  + g3)2 + 6(a + b + c) 2 

× (a 4+  b 4 + c 4 ) ( a  4+ d 4+e4) 3 

x (a 4 + f 4  + g4)2 + 6(a 2 + b E + c 2) 
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× ( a  4 + b 4 + c4) (a  4 + d 4 + e4) 3 

× ( a  4 + f 4 + g 4 ) 2 +  8 ( a  6 + b  6 + c  6) 

x ( a  6 + d  6 + e 6 )  z ( a + f + g ) 2  

× (a  6 + f 6  + g6)] .  

Taking the analogous set of weight functions for the 
tetrahedral group, the pattern inventory is 

inv(S) = ~ [ ( a  + b + c) 4 (a + d + e) 6 (a + f + g)4 

+ 6(a + b + c) 2 (a 2 + b E + c2)(a + d + e) 2 

x ( a  2 + d  E+e2)  2 ( a + f + g ) 2 ( a  z + f 2 g 2 )  

+ 3(a 2 + b 2 + c2) 2 (a + d +  e) 2 

x ( a  2 + d  2+e2 )  2(a 2 + f E + g z ) 2  

+ 8(a + b + c)(a 3 + b 3 + C a) 

x (a 3 + d 3 + e3) 2(a + f +  g) 

x (a 3 + f3  + g3) + 6(a 4 + b 4 + C4) 

x (a 2 + d 2 + e2)(a 4 + d 4 + e 4) 

x (a 4 + f 4  + g4)]. 

These expressions can either be expanded to provide 
a complete solution, or individual terms can be 
evaluated as required using the multinomial theorem. 

An example 

Consider the graphical isomer (102100001110000) 
from the previous example of three octahedra and three 
tetrahedra; the matrix representation is shown in Table 
7. The octahedron constituting the first row shares one 
vertex with another octahedron and two vertices with 
other tetrahedra. However, the two vertices shared with 
the tetrahedra are distinct, as tetrahedron 4 links to 
another tetrahedron, whereas tetrahedron 6 does not; 
thus the term of interest in the pattern inventory for 
the octahedral group is a 23 b e  4 C 6. Using the multinomial 
theorem, the relevant term from the pattern inventory is 

48 3 1 12 + no terms 

+ 3  ( 1 4 1 ) ( ~ ) ( 4 )  ( 4 ) ( 4 ) + n o t e r m s ]  

= a 23 be 4 c 6 x 4. 

Table 7. Matrix representation of  the graphical isomer 

o 1 
o 2 
o 3 
t 4 
t 5 
t 6 

(102100001110000) 

o o o t t t 
1 2 3 4 5 6 

- 1 0 1 0 1 

1 - 2 0 0 0 
0 2 - 0 I 0 
1 0 0 - 1 0 

0 0 1 1 - 0 
1 0 0 0 0 - 
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For the octahedra of rows 2 and 3, the relevant terms in 
the octahedron pattern inventory are a 24 b c  and a 24 cd; 
the coefficients of these terms are both 2. For the 
tetrahedra of rows 4, 5 and 6, the relevant terms in the 
tetrahedron pattern inventory are a ~2 bc, a u bc and 
a ~3 b respectively; these terms all have coefficients of 1. 
Thus there are 4 x 2 x 2 x 1 x 1 x 1 = 16 geometrical 
isomers of this cluster graph; these are shown in Fig. 7. 

The M2(TO4)2(PN clusters 

Hawthorne (1979) has shown that the structures of 
several complex phosphate minerals are based on 
polymerization of the [M2(TO4)2tp 7] cluster (111110). 
Similar structural hierarchies in the (T5+O4) 3- and 
(T6+O4) 2- minerals can be set up based on other 
[M2(TO4)2tPN] clusters. This way of approaching 
structural systematics suggests several questions of a 
more fundamental nature: 

(i) how many possible [M2(TO4)2tPNl clusters are 
there, and what are they? 

(ii) how many of these are likely to be stable, and 
what are they? 

(iii) which of these are actually found in structures? 
(iv) can we forecast the stable and unstable clusters 

from energy calculations? 
Using the techniques discussed above, (i) and (ii) can 
be answered to provide the basis for further in- 
vestigation of (iii) and (iv). 

The general adjacency matrix for an [M2(TD4)2tPN] 
cluster is shown in Table 8, and the disjoint cycle 
decomposition of its automorphism group is shown in 
Table 9. The corresponding cycle index, without 
averaging over different orbits, is as follows: 

Z(P)=¼[s~ ~u l  + 3slt~ul], 

where s, t and u correspond to o-o, o-t and t-t linkages 
respectively. If both octahedra and tetrahedra have no 
restrictions on linkage (that is they can be unlinked, 
share corners, edges or faces), the number of schemes 
ISI is given by Z(P; 4,4,4): 

ISI =¼[4 x 44 x 4 + 3 x 4 x 42 x 4] = 1216. 

Fig. 7. Geometrical isomers of the graphical isomer 
(102100001110000). The broken lines represent two possible 
linkages in each cluster. 

These may be retrieved by deriving all ordered six-digit 
combinations of the integers 0,1,2,3 that are distinct 
under the operations of the automorphism group of 
Table 9; these are given in Table 10,* thus answering 
question (i). 

A little stereochemistry can greatly reduce the 
dimensions of the problem when considering the 
possible stable clusters. I am primarily interested in the 
structures of the sulphate, arsenate and phosphate 
minerals, and these exhibit certain stereochemical 
characteristics that allow many of the clusters of Table 
10 to be ignored in this context. Firstly, there is no 
polymerization of (TO 4) tetrahedra (T = S 6+, As 5+, 
ps+). Secondly, tetrahedra rarely share faces or edges 
with octahedra. Subject to these constraints, the 
number of schemes I SI is given by Z(P; 4,2,1): 

I S I =  ¼ [4 x 24 x 1 + 3 x 4 x 22 x 11= 28. 

These are retrieved in a similar manner to those of 
Table 10; they are listed in Table 11. A scheme in 
which all of the polyhedra are not linked together is not 
a cluster, and yet these will also be retrieved by the 
above procedure. For a scheme to constitute a linked 
cluster, each row (or column) of its adjacency matrix 
must contain at least one non-zero matrix element; that 
is, the scheme must satisfy the general conditions 

• xu>O,  j =  l,n, 
i = 1  

• ~ lij> 2 ( n -  1), 
i = l j = ]  

where lij = 1 when x u > O, l u = 0 when x u = O, where 
x u are the adjacency matrix elements = integers of the 

* See deposit footnote. 

Table 8. Adjacency matrix for a cluster of 2 octahedra 
and 2 tetrahedra 

o 1 

o 2 

t 3 

t 4 

0 0 t t 

1 2 3 4 

- a b d 

Q - -  ¢ e 

b c - f 

d e f - 

Table 9. Disjoint cycle decomposition and cycle 
structure of 1-(G) and P for the cluster matrix of  

Table 7 

Disjoint cycle Disjoint cycle 
decomposition decomposition Cycle 

of F(G) of P structure 

(1)(2)(3)(4) (a) (b)(c) (d)(e) ( f )  s~s~sll , 
ele2el  (2 I)(3)(4)  (a) (bc) (de) ( f )  ~1 o2~ 

(1)(2)(43) (a ) (bd) (ce ) ( f )  ~1o2o]~1 ~2~1 
(2 I)(43) ( a)( be)( cd)( f )  ~1~2~1~1 o2ol 
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scheme. Of the 28 clusters in Table 11, only 14 of these 
are completely connected. Fig. 8 shows the resultant 
graphs and their corresponding [M2(TO4)2(ffN] clusters. 
Many of the potential geometrical isomers are not 
possible without interpenetrant polyhedra, and are not 
structurally relevant. 

It is apparent from Fig. 8 that ~0 takes the values 6, 7, 
8 and 9 only. From Pauling's third rule (Pauling, 1960), 
one may draw the inference that a major imperative of 
a structure is the satisfaction of local bond-valence 
requirements (Hawthorne, 1982). One may conjecture 
that a more stable cluster is one in which the maximum 

number of anions have their bond-valence require- 
ments satisfied; these are also the most likely clusters to 
maintain their integrity in solution, being the most 
tightly bound together. In the structures of interest 
here, M = 3 ÷, 2+; T = 5 +, 6 + and thus the anions 
(oxygens) with (approximately) satisfied bond-valence 
requirements are those shared between the M and T 
cations. For each particular stoichiometry, there is only 
one cluster with the maximum number of satisfied 
anions; these are summarized in Fig. 9. It is significant 
that each of the clusters in Fig. 9 is the basis of a 
considerable hierarchy of structures (Hawthorne, 1979, 

GRAPHICAL ISOMER GRAPH GEOMETRICAL ISOMERS 
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101010~ ~ ~ ~ .  

101100~(~ ~ ~ ~ 

011110 ~ 

201010 

GRAPHICAL ISOMER GRAPH GEOMETRICAL ISOMERS 
111110 

201110 

301010 ~ 

211110~ ~ ~ 

301110 ~ ~,~ ~ 

@ 

Fig. 8. Completely connected clusters for all of the isomers of M2(TO4)2¢p/v composition. 
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unpublished), whereas the remaining clusters of Fig. 8 
are far less common or absent in natural sulphates, 
phosphates and arsenates. It would be of interest to 
calculate the total energy of the clusters in Fig. 8 to see 

Table 11. Graphs of M2(TO4)2(PN cousters with no t - t  
linkage and only corner-sharing o-t linkage 

if a more quantitative approach supports the rather 
intuitive arguments given here. 
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Fig. 9. The clusters M2(TO4)2(o N for which the bond-valence 
requirements of the anions are most nearly satisfied for each 
value of tp N. 
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